Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36164730

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-tRNA Sintetases/genética , Mutação , RNA de Transferência/genética , Suplementos Nutricionais
2.
Antioxidants (Basel) ; 11(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36552553

RESUMO

Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.

3.
Acta Neuropathol ; 144(5): 881-910, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121476

RESUMO

The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína/metabolismo , Animais , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Fosfoproteínas , Ubiquitinas , alfa-Sinucleína/toxicidade
4.
J Biol Chem ; 298(5): 101905, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398094

RESUMO

The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90-client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.


Assuntos
Proteínas de Choque Térmico HSP70 , Doenças Neurodegenerativas , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína
5.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456894

RESUMO

Protein misfolding is a common basis of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Misfolded proteins, such as TDP-43, FUS, Matrin3, and SOD1, mislocalize and form the hallmark cytoplasmic and nuclear inclusions in neurons of ALS patients. Cellular protein quality control prevents protein misfolding under normal conditions and, particularly, when cells experience protein folding stress due to the fact of increased levels of reactive oxygen species, genetic mutations, or aging. Molecular chaperones can prevent protein misfolding, refold misfolded proteins, or triage misfolded proteins for degradation by the ubiquitin-proteasome system or autophagy. DnaJC7 is an evolutionarily conserved molecular chaperone that contains both a J-domain for the interaction with Hsp70s and tetratricopeptide domains for interaction with Hsp90, thus joining these two major chaperones' machines. Genetic analyses reveal that pathogenic variants in the gene encoding DnaJC7 cause familial and sporadic ALS. Yet, the underlying ALS-associated molecular pathophysiology and many basic features of DnaJC7 function remain largely unexplored. Here, we review aspects of DnaJC7 expression, interaction, and function to propose a loss-of-function mechanism by which pathogenic variants in DNAJC7 contribute to defects in DnaJC7-mediated chaperoning that might ultimately contribute to neurodegeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Dobramento de Proteína , Superóxido Dismutase-1/genética
6.
Antioxidants (Basel) ; 11(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204126

RESUMO

Cells that experience high levels of oxidative stress respond by inducing antioxidant proteins through activation of the protein transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is negatively regulated by the E3 ubiquitin ligase Kelch-like ECH-associated protein 1 (Keap1), which binds to Nrf2 to facilitate its ubiquitination and ensuing proteasomal degradation under basal conditions. Here, we studied protein folding and misfolding in Nrf2 and Keap1 in yeast, mammalian cells, and purified proteins under oxidative stress conditions. Both Nrf2 and Keap1 are susceptible to protein misfolding and inclusion formation upon oxidative stress. We propose that the intrinsically disordered regions within Nrf2 and the high cysteine content of Keap1 contribute to their oxidation and the ensuing misfolding. Our work reveals previously unexplored aspects of Nrf2 and Keap1 regulation and/or dysregulation by oxidation-induced protein misfolding.

7.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35088844

RESUMO

Nrf2 is the master transcriptional regulator of cellular responses against oxidative stress. It is chiefly regulated by Keap1, a substrate adaptor protein that mediates Nrf2 degradation. Nrf2 activity is also influenced by many other protein interactions that provide Keap1-independent regulation. To study Nrf2 regulation, we established and characterized yeast models expressing human Nrf2 (also known as NFE2L2), Keap1 and other proteins that interact with and regulate Nrf2. Yeast models have been well established as powerful tools to study protein function and genetic and physical protein-protein interactions. In this work, we recapitulate previously described Nrf2 interactions in yeast and discover that Nrf2 interacts with the molecular chaperone Hsp90. Our work establishes yeast as a useful tool to study Nrf2 interactions and provides new insight into the crosstalk between the antioxidant response and the heat shock response.


Assuntos
Fator 2 Relacionado a NF-E2 , Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 49(20): 11883-11899, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718744

RESUMO

In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.


Assuntos
Proteína Huntingtina/biossíntese , Doença de Huntington/genética , RNA de Transferência de Prolina/genética , Acetamidas/farmacologia , Animais , Linhagem Celular Tumoral , Códon/genética , Cicloexilaminas/farmacologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Peptídeos/toxicidade , Proteólise , RNA de Transferência de Prolina/metabolismo , Ratos
9.
Front Cell Dev Biol ; 9: 722560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557490

RESUMO

Assessing the stability and degradation of proteins is central to the study of cellular biological processes. Here, we describe a novel pulse-chase method to determine the half-life of cellular proteins that overcomes the limitations of other commonly used approaches. This method takes advantage of pulse-labeling of nascent proteins in living cells with the bioorthogonal amino acid L-azidohomoalanine (AHA) that is compatible with click chemistry-based modifications. We validate this method in both mammalian and yeast cells by assessing both over-expressed and endogenous proteins using various fluorescent and chemiluminescent click chemistry-compatible probes. Importantly, while cellular stress responses are induced to a limited extent following live-cell AHA pulse-labeling, we also show that this response does not result in changes in cell viability and growth. Moreover, this method is not compromised by the cytotoxicity evident in other commonly used protein half-life measurement methods and it does not require the use of radioactive amino acids. This new method thus presents a versatile, customizable, and valuable addition to the toolbox available to cell biologists to determine the stability of cellular proteins.

10.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299054

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription regulator that plays a pivotal role in coordinating the cellular response to oxidative stress. Through interactions with other proteins, such as Kelch-like ECH-associated protein 1 (Keap1), CREB-binding protein (CBP), and retinoid X receptor alpha (RXRα), Nrf2 mediates the transcription of cytoprotective genes critical for removing toxicants and preventing DNA damage, thereby playing a significant role in chemoprevention. Dysregulation of Nrf2 is linked to tumorigenesis and chemoresistance, making Nrf2 a promising target for anticancer therapeutics. However, despite the physiological importance of Nrf2, the molecular details of this protein and its interactions with most of its targets remain unknown, hindering the rational design of Nrf2-targeted therapeutics. With this in mind, we used a combined bioinformatics and experimental approach to characterize the structure of full-length Nrf2 and its interaction with Keap1. Our results show that Nrf2 is partially disordered, with transiently structured elements in its Neh2, Neh7, and Neh1 domains. Moreover, interaction with the Kelch domain of Keap1 leads to protection of the binding motifs in the Neh2 domain of Nrf2, while the rest of the protein remains highly dynamic. This work represents the first detailed structural characterization of full-length Nrf2 and provides valuable insights into the molecular basis of Nrf2 activity modulation in oxidative stress response.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Sítios de Ligação , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Modelos Moleculares , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína
11.
FASEB J ; 35(5): e21594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908654

RESUMO

Protein misfolding is a central feature of most neurodegenerative diseases. Molecular chaperones can modulate the toxicity associated with protein misfolding, but it remains elusive which molecular chaperones and co-chaperones interact with specific misfolded proteins. TDP-43 misfolding and inclusion formation are a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Using yeast and mammalian neuronal cells we find that Hsp90 and its co-chaperone Sti1 have the capacity to alter TDP-43 misfolding, inclusion formation, aggregation, and cellular toxicity. Our data also demonstrate that impaired Hsp90 function sensitizes cells to TDP-43 toxicity and that Sti1 specifically interacts with and strongly modulates TDP-43 toxicity in a dose-dependent manner. Our study thus uncovers a previously unrecognized tie between Hsp90, Sti1, TDP-43 misfolding, and cellular toxicity.


Assuntos
Apoptose , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/fisiologia , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteinopatias TDP-43/patologia , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Humanos , Corpos de Inclusão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteinopatias TDP-43/etiologia
12.
Front Mol Biosci ; 8: 794646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083279

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.

13.
STAR Protoc ; 1(3): 100182, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377076

RESUMO

We present a detailed protocol that describes the evaluation of the growth and survival of yeast cells by quantitatively analyzing spotting assays. This simple method reproducibly detects and quantifies subtle differences in growth by measuring the density of cells within a single spot of defined size on an image of a spotting assay. Our protocol is tailored specifically for low-throughput applications, can be easily adapted for specific experimental conditions, and is accessible to yeast experts and non-experts alike. For an example of the execution of this protocol, please refer to DiGregorio et al. (Di Gregorio et al., 2020).


Assuntos
Ágar/farmacologia , Técnicas de Cultura de Células/métodos , Imageamento Tridimensional , Viabilidade Microbiana , Saccharomyces cerevisiae/crescimento & desenvolvimento , Algoritmos , Éxons/genética , Proteína Huntingtina/genética , Viabilidade Microbiana/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
14.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764283

RESUMO

The Rho guanine nucleotide exchange factor (RGNEF) protein encoded by the ARHGEF28 gene has been implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Biochemical and pathological studies have shown that RGNEF is a component of the hallmark neuronal cytoplasmic inclusions in ALS-affected neurons. Additionally, a heterozygous mutation in ARHGEF28 has been identified in a number of familial ALS (fALS) cases that may give rise to one of two truncated variants of the protein. Little is known about the normal biological function of RGNEF or how it contributes to ALS pathogenesis. To further explore RGNEF biology we have established and characterized a yeast model and characterized RGNEF expression in several mammalian cell lines. We demonstrate that RGNEF is toxic when overexpressed and forms inclusions. We also found that the fALS-associated mutation in ARGHEF28 gives rise to an inclusion-forming and toxic protein. Additionally, through unbiased screening using the split-ubiquitin system, we have identified RGNEF-interacting proteins, including two ALS-associated proteins. Functional characterization of other RGNEF interactors identified in our screen suggest that RGNEF functions as a microtubule regulator. Our findings indicate that RGNEF misfolding and toxicity may cause impairment of the microtubule network and contribute to ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Microtúbulos/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Regulação da Expressão Gênica/genética , Heterozigoto , Humanos , Mamíferos , Mutação , Neurônios/patologia , Ligação Proteica/genética , Ubiquitina/genética , Leveduras/genética
15.
J Neurochem ; 153(6): 727-758, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31562773

RESUMO

Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. Cover Image for this issue: doi: 10.1111/jnc.14749.


Assuntos
Envelhecimento/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/deficiência , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Adaptação Fisiológica/fisiologia , Envelhecimento/genética , Animais , Células-Tronco Embrionárias/metabolismo , Técnicas de Inativação de Genes/métodos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Neurônios/metabolismo
16.
Curr Genet ; 66(1): 263-277, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31346745

RESUMO

Progressive impairment of proteostasis and accumulation of toxic misfolded proteins are associated with the cellular aging process. Here, we employed chronologically aged yeast cells to investigate how activation of the unfolded protein response (UPR) upon accumulation of misfolded proteins in the endoplasmic reticulum (ER) affects lifespan. We found that cells lacking a functional UPR display a significantly reduced chronological lifespan, which contrasts previous findings in models of replicative aging. We find exacerbated UPR activation in aged cells, indicating an increase in misfolded protein burden in the ER during the course of aging. We also observed that caloric restriction, which promotes longevity in various model organisms, extends lifespan of UPR-deficient strains. Similarly, aging in pH-buffered media extends lifespan, albeit independently of the UPR. Thus, our data support a role for caloric restriction and reduced acid stress in improving ER homeostasis during aging. Finally, we show that UPR-mediated upregulation of the ER chaperone Kar2 and functional ER-associated degradation (ERAD) are essential for proper aging. Our work documents the central role of secretory protein homeostasis in chronological aging in yeast and highlights that the requirement for a functional UPR can differ between post-mitotic and actively dividing eukaryotic cells.


Assuntos
Senescência Celular , Saccharomyces cerevisiae/fisiologia , Resposta a Proteínas não Dobradas , Restrição Calórica , Deleção de Genes , Concentração de Íons de Hidrogênio , Longevidade/genética , Glicoproteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Nucleic Acids Res ; 47(6): 3045-3057, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30715470

RESUMO

Uridylation-dependent RNA decay is a widespread eukaryotic pathway modulating RNA homeostasis. Terminal uridylyltransferases (Tutases) add untemplated uridyl residues to RNA 3'-ends, marking them for degradation by the U-specific exonuclease Dis3L2. In Schizosaccharomyces pombe, Cid1 uridylates a variety of RNAs. In this study, we investigate the prevalence and impact of uridylation-dependent RNA decay in S. pombe by transcriptionally profiling cid1 and dis3L2 deletion strains. We found that the exonuclease Dis3L2 represents a bottleneck in uridylation-dependent mRNA decay, whereas Cid1 plays a redundant role that can be complemented by other Tutases. Deletion of dis3L2 elicits a cellular stress response, upregulating transcription of genes involved in protein folding and degradation. Misfolded proteins accumulate in both deletion strains, yet only trigger a strong stress response in dis3L2 deficient cells. While a deletion of cid1 increases sensitivity to protein misfolding stress, a dis3L2 deletion showed no increased sensitivity or was even protective. We furthermore show that uridylyl- and adenylyltransferases cooperate to generate a 5'-NxAUUAAAA-3' RNA motif on dak2 mRNA. Our studies elucidate the role of uridylation-dependent RNA decay as part of a global mRNA surveillance, and we found that perturbation of this pathway leads to the accumulation of misfolded proteins and elicits cellular stress responses.


Assuntos
RNA Nucleotidiltransferases/genética , Estabilidade de RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Nucleotidiltransferases/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Uridina/genética
18.
Traffic ; 20(4): 267-283, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30740854

RESUMO

Chromatin remodeling regulates gene expression in response to the accumulation of misfolded polyQ proteins associated with Huntington's disease (HD). Tra1 is an essential component of both the SAGA/SLIK and NuA4 transcription co-activator complexes and is linked to multiple cellular processes, including protein trafficking and signaling pathways associated with misfolded protein stress. Cells with compromised Tra1 activity display phenotypes distinct from deletions encoding components of the SAGA and NuA4 complexes, indicating a potentially unique regulatory role of Tra1 in the cellular response to protein misfolding. Here, we employed a yeast model to define how the expression of toxic polyQ expansion proteins affects Tra1 expression and function. Expression of expanded polyQ proteins mimics deletion of SAGA/NuA4 components and results in growth defects under stress conditions. Moreover, deleting genes encoding SAGA and, to a lesser extent, NuA4 components exacerbates polyQ toxicity. Also, cells carrying a mutant Tra1 allele displayed increased sensitivity to polyQ toxicity. Interestingly, expression of polyQ proteins upregulated the expression of TRA1 and other genes encoding SAGA components, revealing a feedback mechanism aimed at maintaining Tra1 and SAGA functional integrity. Moreover, deleting the TORC1 (Target of Rapamycin) effector SFP1 abolished upregulation of TRA1 upon expression of polyQ proteins. While Sfp1 is known to adjust ribosome biogenesis and cell size in response to stress, we identified a new role for Sfp1 in the control of TRA1 expression, linking TORC1 and cell growth regulation to the SAGA acetyltransferase complex during misfolded protein stress.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Peptídeos/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Processos de Crescimento Celular , Proteínas de Ligação a DNA/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Histona Acetiltransferases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Peptídeos/genética , Peptídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
19.
FEBS J ; 286(10): 1859-1876, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719832

RESUMO

The assembly of proteins into dimers and oligomers is a necessary step for the proper function of transcription factors, muscle proteins, and proteases. In uncontrolled states, oligomerization can also contribute to illnesses such as Alzheimer's disease. The S100 protein family is a group of dimeric proteins that have important roles in enzyme regulation, cell membrane repair, and cell growth. Most S100 proteins have been examined in their homodimeric state, yet some of these important proteins are found in similar tissues implying that heterodimeric molecules can also be formed from the combination of two different S100 members. In this work, we have established co-expression methods in order to identify and quantify the distribution of homo- and heterodimers for four specific pairs of S100 proteins in their calcium-free states. The split GFP trap methodology was used in combination with other GFP variants to simultaneously quantify homo- and heterodimeric S100 proteins in vitro and in living cells. For the specific S100 proteins examined, NMR, mass spectrometry, and GFP trap experiments consistently show that S100A1:S100B, S100A1:S100P, and S100A11:S100B heterodimers are the predominant species formed compared to their corresponding homodimers. We expect the tools developed here will help establish the roles of S100 heterodimeric proteins and identify how heterodimerization might alter the specificity for S100 protein action in cells.


Assuntos
Proteínas S100/química , Proteínas S100/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas S100/genética , Espectrometria de Massas por Ionização por Electrospray
20.
J Vis Exp ; (141)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30582582

RESUMO

For the investigation of protein localization and trafficking using live cell imaging, researchers often rely on fusing their protein of interest to a fluorescent reporter. The constantly evolving list of genetically encoded fluorescent proteins (FPs) presents users with several alternatives when it comes to fluorescent fusion design. Each FP has specific optical and biophysical properties that can affect the biochemical, cellular, and functional properties of the resulting fluorescent fusions. For instance, several FPs tend to form nonspecific oligomers that are susceptible to impede on the function of the fusion partner. Unfortunately, only a few methods exist to test the impact of FPs on the behavior of the fluorescent reporter. Here, we describe a simple method that enables the rapid assessment of the impact of FPs using polyglutamine (polyQ) toxicity assays in the budding yeast Saccharomyces cerevisiae. PolyQ-expanded huntingtin proteins are associated with the onset of Huntington's disease (HD), where the expanded huntingtin aggregates into toxic oligomers and inclusion bodies. The aggregation and toxicity of polyQ expansions in yeast are highly dependent on the sequences flanking the polyQ region, including the presence of fluorescent tags, thus providing an ideal experimental platform to study the impact of FPs on the behavior of their fusion partner.


Assuntos
Corantes Fluorescentes/metabolismo , Proteína Huntingtina/metabolismo , Peptídeos/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Corantes Fluorescentes/análise , Humanos , Proteína Huntingtina/análise , Proteína Huntingtina/genética , Doença de Huntington/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...